Financial Development and International Agricultural Trade

Is there a connection?

D. Susanto and C. P. Rosson

Department of Agricultural Economics, Texas A&M University College Station, Texas

Introduction

Trade theory suggests that:

- Technology and factor endowments are two sources of comparative advantages and thus trade patterns
- Economies of scale can give rise to trade even with the absence of comparative advantage (Krugman, Dixit and Norman, Lancaster)

New Development:

Financial development as a potential source of a country's comparative advantage

Financial Development and trade

Liquidity constraints (Chaney; Melitz; Beck; Manova)

- When a domestic financial institution is weak or inefficient, firms in export oriented sectors are burdened by liquidity constraints
- Preventing a subset of productive firms to enter the foreign markets

Prediction: financial underdevelopment hinders exports

With less restrictive liquidity constraints (i.e. due to financial reforms):

- ✓ Investment can increase more in response to a lowering variable export costs
- ✓ Firms with productivity above a certain cut-of level become exporters

Objectives

- To investigate the possible link between financial development and trade flows in agricultural products
- Specifically, attempt to assess the extent to which financial development has contributed to bilateral agricultural trade flows

Empirical Model and Estimation

Empirical Model – The Gravity Equation

$$\begin{split} \ln T_{ijt} &= \alpha_i + \gamma_j + \nu_t + \beta_1 LGDP_{ijt} + \beta_2 LGDPI_{ijt} + \beta_3 LGDPP_{ijt} \\ &+ \beta_4 LDIS_{ij} + \beta_5 FinReform_{it} + \beta_6 Language + \beta_7 Border \\ &+ \beta_8 RTA + u_{ijt} \end{split}$$

LGDP_{iit}: bilateral overall country size

LGDPI : index of relative country size

LGDPP iit: different in relative factor endowments

LDIS ;;: geographic distance (log value)

Fin Re form it: financial reform index (abiad et al, 2010)

Estimation Procedures:

Serious problem with the logarithmic transformation of the gravity model (Santos Silva and Tenreyro, 2006)

- 1. Log linear model cannot be expected to provide unbiased estimates of means effects when the errors are heterocedastic
- 2. The prevalence of zero trade flows

Alternative procedure is to use a count data model, ie. negative binomial model.

Can accommodate (Greene, 1994):

- 1. The problems of equidispersion assumption
- 2. Unobserved individual heterogeneity
- 3. Zero trade flows

Binomial model (Hausman, Hall, and Griliches, 1984): The conditional expected value and variance of the random effects negative binomial are

$$\begin{split} E(T_{ijt} \mid x_{ijt}, \alpha_{ij}) &= \alpha_{ij} \lambda_{ijt} \\ V(T_{ijt} \mid x_{ijt}, \alpha_{ij}) &= \alpha_{ij} \lambda_{ijt} (1 + \alpha_{ij})^{-1} \\ \lambda_{ijt} &= Exp(x_{ijt}'\beta) \\ (1 + \alpha_{ijt})^{-1} : is \ a \ beta \ distributed \ random \ variable \ with \ parameter(a,b) \end{split}$$

The joint density of trade flows is

$$\Pr(T_{ij1},....T_{ijT}) = \left(\prod_{t=1}^{T} \frac{\Gamma(\lambda_{ijt} + T_{ijt})}{\Gamma(\lambda_{ijt})\Gamma(T_{ijt} + 1)}\right) x \frac{\Gamma(a+b)\Gamma(a + \sum_{t} \lambda_{ijt})\Gamma(b + \sum_{t} T_{ijt})}{\Gamma(a)\Gamma(b)\Gamma(a+b + \sum_{t} \lambda_{ijt} + \sum_{t} T_{ijt})}$$

Estimated using STATA

Data

- ❖ Bilateral exports of agricultural products: 49 countries from 1989 to 2008 (5-year average trade flows) from UN COMTRADE database.
- GDP and population: World Development Indicator 9World Bank).
- * RTA:OECD
- LDIS: World atlas
- LANGUAGE: CIA'S World Fact book
- Financial reform: Abiad et al (2010)

Table 1: Summary Statistics of Variables

Variable	Mean	SD	Min.	Max	N
Average agric. exports (million)	123	680	0	26,859	14,112
Geographic distance (ln)	8.26	0.86	3.78	9.42	14,112
LGDP	5.91	1.34	2.00	9.69	14,112
LGDPI	-1.66	1.08	-7.16	-0.69	14,112
LGDPP	1.62	1.18	0.00	5.09	14,112
Common language dummy	0.16	0.36	0	1	14,112
Contiguity dummy	0.05	0.22	0	1	14,112
Regional trade agreement dummy	0.13	0.33	0	1	14,112
Financial reform index (exporter)					
Total	0.61	0.28	0.00	1.00	14,112
Advanced country	0.78	0.22	0.12	1.00	6,048
Developing country	0.48	0.26	0.00	0.95	8,064

Source: Calculated

Table 2: Random Effects Models of the gravity Equation

Variable	Poisson	Negative Binomial
INTERCEPT	0.3002 (0.3555)	-0.6282 (0.2961)**
LGDP	1.4826 (0.0174)***	0.9293 (0.0227)***
LGDPI	0.4301 (0.0158)***	0.3109 (0.0239)***
LGDPP	0.2856 (0.0142)***	$0.0332 \left(0.0171\right)^*$
LDIST	-1.1046 (0.0353)***	-0.6479 (0.0277)***
BORDER	0.5489 (0.1166)***	-0.3179 (0.0827)***
LANGUAGE	0.5826 (0.0718)***	$0.4378 (0.0513)^{***}$
RTA	$0.2822 (0.0086)^{***}$	0.2431 (0.0311)***
FinReform	0.7752 (0.0204)***	0.6646 (0.0897)***
Alpha	1.1655 (0.0344)***	
a	-	0.9789 (0.0336)
b	-	2.5405 (0.1505)

Notes: ***, **, and * are significant at the 1%, 5%, and 10% levels, respectively

Table 2: Random Effects Models of the gravity Equation

Variable	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6
INTERCEPT	1.727**	2.156	2.596	-3.109***	1.358	-5.637**
	(0.809)	(1.823)	(1.926)	(0.934)	(1.559)	(1.191)
LDIST	-0.537***	-0.615***	-0.575***	-0.698***	-0.775***	-0.495***
	(0.053)	(0.074)	(0.088)	(0.050)	(0.067)	(0.089)
BORDER	-0.147	-0.112	0.494^{*}	-0.246	-0.519***	0.449
	(0.120)	(0.130)	(0.270)	(0.139)	(0.165)	(0.288)
LANGUAGE	0.290^{***}	0.444^{***}	0.230^{*}	0.582***	0.633***	0.314**
	(0.084)	(0.107)	(0.127)	(0.082)	(0.131)	(0.125)
RTA	0.276***	0.278***	0.158^{**}	0.128**	0.243^{*}	0.240^{***}
	(0.037)	(0.045)	(0.077)	(0.061)	(0.131)	(0.075)
FinReform	0.620***	0.867***	0.196	0.221*	0.518**	0.249*
	(0.142)	(0.169)	(0.269)	(0.125)	(0.233)	(0.144)
a	1.157	1.780	1.364	1.076	1.145	1.259
	(0.064)	(0.194)	(0.097)	(0.051)	(0.075)	(0.093)
b	4.145	16.34	2.712	1.966	1.694	3.071
	(0.387)	(2.858)	(0.291)	(0.152)	(0.187)	(0.359)

Notes: ***, **, and * are significant at the 1%, 5%, and 10% levels, respectively.

Notes:

- Case 1: Advanced to all countries
- Case 2: Advanced to advanced countries
- Case 3: Advanced to developing countries
- Case 4: Developing to all countries
- Case 5: Developing to advanced countries
- Case 6: Developing to developing countries

Key Findings

- This study provides supporting evidence for the models on trade and financial reforms (financial development)
- ❖ Financial reforms have positive impacts on agricultural trade flows – higher level of financial development the greater the positive impact on agricultural exports.
- Agricultural trade involving advanced countries respond by a higher degree of magnitude to financial reforms than developing countries

Implications

- Provides a solid policy foundation for pursuing financial reforms in order to stimulate agricultural trade and economic growth
- ❖ A country with a low level of financial development should benefit of pursuing financial reforms because agricultural exports would expected to rise