Decoupled Farm Payments and the Role of Base Updating under Uncertainty

Arathi Bhaskar and John Beghin

Iowa State University

November 16, 2007
Motivation

- URAA (1994) of the WTO categorized agricultural support payments into three boxes:
 - **Amber Box**: Subsidies which cause most distortion
 - **Blue Box**: Subsidies that cause some distortion but are production limiting
 - **Green Box**: Subsidies that cause minimal or no distortion

Definition of Decoupled Payments (URAA)
- Financed by taxpayers
- Do not depend on current production, factor use, or prices
- Eligibility criteria are defined by a fixed, historical base period
- Production not required to receive payments
Motivation

• URAA (1994) of the WTO categorized agricultural support payments into three boxes
 ▶ Amber Box: Subsidies which cause most distortion
Motivation

- URAA (1994) of the WTO categorized agricultural support payments into three boxes
 - Amber Box: Subsidies which cause most distortion
 - Blue Box: Subsidies that cause some distortion but are production limiting
Motivation

- URAA (1994) of the WTO categorized agricultural support payments into three boxes
 - Amber Box: Subsidies which cause most distortion
 - Blue Box: Subsidies that cause some distortion but are production limiting
 - Green Box: Subsidies that cause minimal or no distortion
Motivation

- URAA (1994) of the WTO categorized agricultural support payments into three boxes
 - Amber Box: Subsidies which cause most distortion
 - Blue Box: Subsidies that cause some distortion but are production limiting
 - Green Box: Subsidies that cause minimal or no distortion

- Definition of Decoupled Payments (URAA)
Motivation

- URAA (1994) of the WTO categorized agricultural support payments into three boxes
 - Amber Box: Subsidies which cause most distortion
 - Blue Box: Subsidies that cause some distortion but are production limiting
 - Green Box: Subsidies that cause minimal or no distortion

- Definition of Decoupled Payments (URAA)
 - Financed by taxpayers
Motivation

- URAA (1994) of the WTO categorized agricultural support payments into three boxes
 - Amber Box: Subsidies which cause most distortion
 - Blue Box: Subsidies that cause some distortion but are production limiting
 - Green Box: Subsidies that cause minimal or no distortion

- Definition of Decoupled Payments (URAA)
 - Financed by taxpayers
 - Do not depend on current production, factor use, or prices
Motivation

• URAA (1994) of the WTO categorized agricultural support payments into three boxes
 ▶ Amber Box: Subsidies which cause most distortion
 ▶ Blue Box: Subsidies that cause some distortion but are production limiting
 ▶ Green Box: Subsidies that cause minimal or no distortion

• Definition of Decoupled Payments (URAA)
 ▶ Financed by taxpayers
 ▶ Do not depend on current production, factor use, or prices
 ▶ Eligibility criteria are defined by a fixed, historical base period
Motivation

- **URAA (1994) of the WTO** categorized agricultural support payments into three boxes:
 - **Amber Box**: Subsidies which cause most distortion
 - **Blue Box**: Subsidies that cause some distortion but are production limiting
 - **Green Box**: Subsidies that cause minimal or no distortion

- **Definition of Decoupled Payments (URAA)**:
 - Financed by taxpayers
 - Do not depend on current production, factor use, or prices
 - Eligibility criteria are defined by a fixed, historical base period
 - Production not required to receive payments
Coupling mechanisms of Decoupled Payments

- Uncertainty - Hennessy (1998)
Coupling mechanisms of Decoupled Payments

- Uncertainty - Hennessy (1998)
- Imperfect credit market - Roe et al. (2003)
Coupling mechanisms of Decoupled Payments

- Uncertainty - Hennessy (1998)
- Imperfect credit market - Roe et al. (2003)
- Labor market - El-Osta et al. (2004), Ahearn et al. (2006)
Coupling mechanisms of Decoupled Payments

- Uncertainty - Hennessy (1998)
- Imperfect credit market - Roe et al. (2003)
- Labor market - El-Osta et al. (2004), Ahearn et al. (2006)
- Land market - Goodwin et al. (2003)
Coupling mechanisms of Decoupled Payments

- Uncertainty - Hennessy (1998)
- Imperfect credit market - Roe et al. (2003)
- Labor market - El-Osta et al. (2004), Ahearn et al. (2006)
- Land market - Goodwin et al. (2003)
- Expectations - Sumner (2003), McIntosh et al. (2006) and Coble et al. (2007)
Our Approach

- Follow Duffy and Taylor (1994)
Our Approach

- Follow Duffy and Taylor (1994)
- Combine Dynamic Programming with Expected Present Value calculations and maximize the stream of profits over the two policy regimes
Our Approach

- Follow Duffy and Taylor (1994)
- Combine Dynamic Programming with Expected Present Value calculations and maximize the stream of profits over the two policy regimes
 - This allows us to quantify the effect of expected base update in terms of acreage
Our Approach

- Follow Duffy and Taylor (1994)
- Combine Dynamic Programming with Expected Present Value calculations and maximize the stream of profits over the two policy regimes
 - This allows us to quantify the effect of expected base update in terms of acreage
- Representative farmer producing single crop faces price, yield and policy uncertainty
Our Approach

Follow Duffy and Taylor (1994)

Combine Dynamic Programming with Expected Present Value calculations and maximize the stream of profits over the two policy regimes

- This allows us to quantify the effect of expected base update in terms of acreage

Representative farmer producing single crop faces price, yield and policy uncertainty

- Policy uncertainty is captured by $\delta \in [0, 1]$
Our Approach

- Follow Duffy and Taylor (1994)
- Combine Dynamic Programming with Expected Present Value calculations and maximize the stream of profits over the two policy regimes
 - This allows us to quantify the effect of expected base update in terms of acreage
- Representative farmer producing single crop faces price, yield and policy uncertainty
 - Policy uncertainty is captured by $\delta \in [0, 1]$
- National level analysis
Three Government Payments
Three Government Payments

- Direct payments (DP)
Three Government Payments

- Direct payments (DP)
- Counter-cyclical payments (CCP)
Three Government Payments

- Direct payments (DP)
- Counter-cyclical payments (CCP)
- Loan deficiency payments (LDP)
Three Government Payments
- Direct payments (DP)
- Counter-cyclical payments (CCP)
- Loan deficiency payments (LDP)

New base acreage for DP and CCP equals the average of the acreage planted during current policy regime
Three Government Payments

- Direct payments (DP)
- Counter-cyclical payments (CCP)
- Loan deficiency payments (LDP)

New base acreage for DP and CCP equals the average of the acreage planted during current policy regime

Results
Three Government Payments

- Direct payments (DP)
- Counter-cyclical payments (CCP)
- Loan deficiency payments (LDP)

New base acreage for DP and CCP equals the average of the acreage planted during current policy regime

Results

- The solution is the average optimal planted acreage, \bar{A}
Three Government Payments

- Direct payments (DP)
- Counter-cyclical payments (CCP)
- Loan deficiency payments (LDP)

New base acreage for DP and CCP equals the average of the acreage planted during current policy regime

Results

- The solution is the average optimal planted acreage, \bar{A}
- \bar{A} is weakly increasing in δ
Three Government Payments
- Direct payments (DP)
- Counter-cyclical payments (CCP)
- Loan deficiency payments (LDP)

New base acreage for DP and CCP equals the average of the acreage planted during current policy regime

Results
- The solution is the average optimal planted acreage, \bar{A}
- \bar{A} is weakly increasing in δ
- Maximum percent increase in \bar{A} is 6%
Per Period Profit

- Period of analysis covers 2 Farm Bills: 2002-2011
Per Period Profit

- Period of analysis covers 2 Farm Bills: 2002-2011
- Risk neutral farmer producing a single crop, corn
Per Period Profit

- Period of analysis covers 2 Farm Bills: 2002-2011
- Risk neutral farmer producing a single crop, corn
- Two sources of income
Per Period Profit

- Period of analysis covers 2 Farm Bills: 2002-2011
- Risk neutral farmer producing a single crop, corn
- Two sources of income
 - Market Income: \(\tilde{P}_t \tilde{Y}_t A_t \)
Per Period Profit

- Period of analysis covers 2 Farm Bills: 2002-2011
- Risk neutral farmer producing a single crop, corn
- Two sources of income
 - Market Income: $\tilde{P}_t \tilde{Y}_t A_t$
 - Government payments: DP, CCP and LDP
Per Period Profit

- Period of analysis covers 2 Farm Bills: 2002-2011
- Risk neutral farmer producing a single crop, corn
- Two sources of income
 - Market Income: $\tilde{P}_t \tilde{Y}_t A_t$
 - Government payments: DP, CCP and LDP
- Per period profit

$$\pi_t = \tilde{P}_t \tilde{Y}_t A_t + LDP + DP + CCP - TC(A_t)$$
Maximize Expected Present Value of profits over 2002-2011

\[
\max_{A_t} E \left[\sum_{t=0}^{4} \beta^t \pi_t(A_t, \tilde{P}_t, \tilde{Y}_t) + \beta^5 (\delta \ast VB + (1 - \delta) \ast VNB) \right]
\]

- VB is the value function for the stochastic dynamic programming (SDP) problem associated with base updating
Maximize Expected Present Value of profits over 2002-2011

\[
\max_{A_t} E \left[\sum_{t=0}^{4} \beta^t \pi_t(A_t, \tilde{P}_t, \tilde{Y}_t) + \beta^5 (\delta \ast VB + (1 - \delta) \ast VNB) \right]
\]

- VB is the value function for the stochastic dynamic programming (SDP) problem associated with base updating
- VNB is the value function for the SDP problem associated with no base updating
Maximize Expected Present Value of profits over 2002-2011

\[
\max_{A_t} E \left[\sum_{t=0}^{4} \beta^t \pi_t(A_t, \tilde{P}_t, \tilde{Y}_t) + \beta^5 (\delta \ast VB + (1 - \delta) \ast VNB) \right]
\]

- VB is the value function for the stochastic dynamic programming (SDP) problem associated with base updating
- VNB is the value function for the SDP problem associated with no base updating
- VB and VNB represent the possible values of future income from the market and government payments
Maximize Expected Present Value of profits over 2002-2011

\[
\max_{A_t} E \left[\sum_{t=0}^{4} \beta^t \pi_t(A_t, \tilde{P}_t, \tilde{Y}_t) + \beta^5 (\delta \ast VB + (1 - \delta) \ast VNB) \right]
\]

- \(VB \) is the value function for the stochastic dynamic programming (SDP) problem associated with base updating.
- \(VNB \) is the value function for the SDP problem associated with no base updating.
- \(VB \) and \(VNB \) represent the possible values of future income from the market and government payments.
- \(\delta \) captures farmer’s beliefs about possibility of base update.
Maximize Expected Present Value of profits over 2002-2011

$$\max_{A_t} E \left[\sum_{t=0}^{4} \beta^t \pi_t(A_t, \tilde{P}_t, \tilde{Y}_t) + \beta^5 (\delta \ast VB + (1 - \delta) \ast VNB) \right]$$

- VB is the value function for the stochastic dynamic programming (SDP) problem associated with base updating
- VNB is the value function for the SDP problem associated with no base updating
- VB and VNB represent the possible values of future income from the market and government payments
- δ captures farmer’s beliefs about possibility of base update
- Supply effect of the expectation of base update: $\bar{A}_{|\delta > 0} - \bar{A}_{|\delta = 0}$
Value function associated with base update

\[VB_t(S_t) = \max_{A_t} \left[\sum_{k=1}^{8} \sum_{l=1}^{8} M^{i,j,k,l} \pi_t + \beta \sum_{k=1}^{8} \sum_{l=1}^{8} M^{i,j,k,l} VB_{t+1}(S_{t+1}) \right] \], \quad t = 1, 2, \ldots, 5. \]

\[S_t = (\tilde{P}_t, \tilde{Y}_t, BA') \]
Value function associated with base update

\[VB_t(S_t) = \max_{A_t} \left[\sum_{k=1}^{8} \sum_{l=1}^{8} M^{i,j,k,l} \pi_t + \beta \sum_{k=1}^{8} \sum_{l=1}^{8} M^{i,j,k,l} VB_{t+1}(S_{t+1}) \right] \], \ t = 1, 2, ...5.

- \(S_t = (\tilde{P}_t, \tilde{Y}_t, BA') \)
- \(M \) is the probability transition matrix
Value function associated with base update

\[VB_t(S_t) = \max_{A_t} \left[\sum_{k=1}^{8} \sum_{l=1}^{8} M^{i,j,k,l} \pi_t + \beta \sum_{k=1}^{8} \sum_{l=1}^{8} M^{i,j,k,l} VB_{t+1}(S_{t+1}) \right], \quad t = 1, 2, \ldots, 5. \]

- \(S_t = (\tilde{P}_t, \tilde{Y}_t, BA') \)
- \(M \) is the probability transition matrix
- Acres discretized into eight values: 900 acres to 1250 acres in increments of 50
Value function associated with base update

\[VB_t(S_t) = \max_{A_t} \left[\sum_{k=1}^{8} \sum_{l=1}^{8} M^{i,j,k,l}_t \pi_t + \beta \sum_{k=1}^{8} \sum_{l=1}^{8} M^{i,j,k,l}_t VB_{t+1}(S_{t+1}) \right] \], \ t = 1, 2, \ldots 5. \]

- \(S_t = (\tilde{P}_t, \tilde{Y}_t, BA') \)
- \(M \) is the probability transition matrix
- Acreage discretized into eight values: 900 acres to 1250 acres in increments of 50
- New base is average of acreage planted during 2002-06
Value function associated with base update

\[VB_t(S_t) = \max_{A_t} \left[\sum_{k=1}^{8} \sum_{l=1}^{8} M^{i,j,k,l} \pi_t + \beta \sum_{k=1}^{8} \sum_{l=1}^{8} M^{i,j,k,l} VB_{t+1}(S_{t+1}) \right], \quad t = 1, 2, \ldots, 5. \]

- \(S_t = (\tilde{P}_t, \tilde{Y}_t, BA') \)
- \(M \) is the probability transition matrix
- Acreage discretized into eight values: 900 acres to 1250 acres in increments of 50
- New base is average of acreage planted during 2002-06
- Possible new base states equal 32768
Value function associated with base update

\[VB_t(S_t) = \max_{A_t} \left[\sum_{k=1}^{8} \sum_{l=1}^{8} M^{i,j,k,l} \pi_t + \beta \sum_{k=1}^{8} \sum_{l=1}^{8} M^{i,j,k,l} VB_{t+1}(S_{t+1}) \right], \quad t = 1, 2, \ldots 5. \]

- \(S_t = (\tilde{P}_t, \tilde{Y}_t, BA') \)
- \(M \) is the probability transition matrix
- Acreage discretized into eight values: 900 acres to 1250 acres in increments of 50
- New base is average of acreage planted during 2002-06
- Possible new base states equal 32768
- Total number of states \(64 \times 32768 = 2097152 \)
Value function associated with no base update

\[VNB_t(S_t) = \max_{A_t} \left[\sum_{k=1}^{8} \sum_{l=1}^{8} M^{i,j,k,l}_t \pi_t + \beta \sum_{k=1}^{8} \sum_{l=1}^{8} M^{i,j,k,l}_t VNB_{t+1}(S_{t+1}) \right], \ t = 1, 2, ..., 5 \]

- \(S_t = (\tilde{P}_t, \tilde{Y}_t) \)
Value function associated with no base update

$$VNB_t(S_t) = \max_{A_t} \left[\sum_{k=1}^{8} \sum_{l=1}^{8} M^{i,j,k,l} \pi_t + \beta \sum_{k=1}^{8} \sum_{l=1}^{8} M^{i,j,k,l} VNB_{t+1}(S_{t+1}) \right], \quad t = 1, 2, \ldots, 5$$

- $S_t = (\tilde{P}_t, \tilde{Y}_t)$
- Total number of states equal 64
Value function associated with no base update

\[VNB_t(S_t) = \max_{A_t} \left[\sum_{k=1}^{8} \sum_{l=1}^{8} M^{i,j,k,l}_t \pi_t + \beta \sum_{k=1}^{8} \sum_{l=1}^{8} M^{i,j,k,l} VNB_{t+1}(S_{t+1}) \right], \ t = 1, 2, \ldots, 5 \]

- \[S_t = (\tilde{P}_t, \tilde{Y}_t) \]
- Total number of states equal 64
- Base acreage for DP and CCP remain the same as the 2002-06 period
Main Problem

$$\max_{A_t} \sum_{t=0}^4 \sum_{k=1}^8 \sum_{l=1}^8 \beta^t M_{i,j,k,l}^{i,j,k,l} \pi_t + \beta^5 \sum_{k=1}^8 \sum_{l=1}^8 M_{i,j,k,l}^{i,j,k,l} (\delta \star \overrightarrow{VB} + (1 - \delta) \star \overrightarrow{VNB})$$

- Farmer maximizes the Expected Present Value of the stream of income over 2002-2011, over all base states
Results

- Results are determined by the price states
Results

- Results are determined by the price states
- Solution to the problem is the Average Optimal Planted Acreage for 2002-06, (\(\bar{A}\)), conditional on farmer’s beliefs, \(\delta\)
Results

- Results are determined by the price states
- Solution to the problem is the Average Optimal Planted Acreage for 2002-06, \bar{A}, conditional on farmer’s beliefs, δ
- \bar{A} is weakly increasing in δ
Average Optimal Planted Acreage over 2002-06

<table>
<thead>
<tr>
<th>Price State</th>
<th>0</th>
<th>0.25</th>
<th>0.5</th>
<th>0.75</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.625</td>
<td>990</td>
<td>1000</td>
<td>1000</td>
<td>1020</td>
<td>1040</td>
</tr>
<tr>
<td>1.875</td>
<td>1000</td>
<td>1000</td>
<td>1020</td>
<td>1040</td>
<td>1050</td>
</tr>
<tr>
<td>2.125</td>
<td>1000</td>
<td>1020</td>
<td>1040</td>
<td>1050</td>
<td>1060</td>
</tr>
<tr>
<td>2.375</td>
<td>1030</td>
<td>1050</td>
<td>1050</td>
<td>1060</td>
<td>1080</td>
</tr>
<tr>
<td>2.625</td>
<td>1050</td>
<td>1060</td>
<td>1070</td>
<td>1090</td>
<td>1100</td>
</tr>
<tr>
<td>2.875</td>
<td>1070</td>
<td>1090</td>
<td>1100</td>
<td>1100</td>
<td>1120</td>
</tr>
<tr>
<td>3.125</td>
<td>1100</td>
<td>1100</td>
<td>1120</td>
<td>1130</td>
<td>1140</td>
</tr>
<tr>
<td>3.375</td>
<td>1120</td>
<td>1130</td>
<td>1140</td>
<td>1150</td>
<td>1160</td>
</tr>
</tbody>
</table>
Percent change in \bar{A} relative to $\delta = 0$

<table>
<thead>
<tr>
<th>Price State</th>
<th>δ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.25</td>
</tr>
<tr>
<td>1.625</td>
<td>1.01</td>
</tr>
<tr>
<td>1.875</td>
<td>0.00</td>
</tr>
<tr>
<td>2.125</td>
<td>2.00</td>
</tr>
<tr>
<td>2.375</td>
<td>1.94</td>
</tr>
<tr>
<td>2.625</td>
<td>0.95</td>
</tr>
<tr>
<td>2.875</td>
<td>1.87</td>
</tr>
<tr>
<td>3.125</td>
<td>0.00</td>
</tr>
<tr>
<td>3.375</td>
<td>0.89</td>
</tr>
</tbody>
</table>
Concluding Remarks

- Decoupled payments do influence producer decisions but impacts are small in magnitude.
Decoupled payments do influence producer decisions but impacts are small in magnitude.

Maximum percent increase in \bar{A} is 6%.
Concluding Remarks

- Decoupled payments do influence producer decisions but impacts are small in magnitude
- Maximum percent increase in \bar{A} is 6%
- Policy implication