Decoupled Farm Payments and the Role of Base Updating under Uncertainty

Arathi Bhaskar and John Beghin

Iowa State University

November 16, 2007

• URAA (1994) of the WTO categorized agricultural support payments into three boxes

- URAA (1994) of the WTO categorized agricultural support payments into three boxes
 - Amber Box: Subsidies which cause most distortion

- URAA (1994) of the WTO categorized agricultural support payments into three boxes
 - Amber Box: Subsidies which cause most distortion
 - Blue Box: Subsidies that cause some distortion but are production limiting

- URAA (1994) of the WTO categorized agricultural support payments into three boxes
 - Amber Box: Subsidies which cause most distortion
 - Blue Box: Subsidies that cause some distortion but are production limiting
 - Green Box: Subsidies that cause minimal or no distortion

- URAA (1994) of the WTO categorized agricultural support payments into three boxes
 - Amber Box: Subsidies which cause most distortion
 - Blue Box: Subsidies that cause some distortion but are production limiting
 - Green Box: Subsidies that cause minimal or no distortion
- Definition of Decoupled Payments (URAA)

- URAA (1994) of the WTO categorized agricultural support payments into three boxes
 - Amber Box: Subsidies which cause most distortion
 - Blue Box: Subsidies that cause some distortion but are production limiting
 - Green Box: Subsidies that cause minimal or no distortion
- Definition of Decoupled Payments (URAA)
 - Financed by taxpayers

- URAA (1994) of the WTO categorized agricultural support payments into three boxes
 - Amber Box: Subsidies which cause most distortion
 - Blue Box: Subsidies that cause some distortion but are production limiting
 - Green Box: Subsidies that cause minimal or no distortion
- Definition of Decoupled Payments (URAA)
 - Financed by taxpayers
 - ▶ Do not depend on current production, factor use, or prices

- URAA (1994) of the WTO categorized agricultural support payments into three boxes
 - Amber Box: Subsidies which cause most distortion
 - Blue Box: Subsidies that cause some distortion but are production limiting
 - Green Box: Subsidies that cause minimal or no distortion
- Definition of Decoupled Payments (URAA)
 - Financed by taxpayers
 - ▶ Do not depend on current production, factor use, or prices
 - ▶ Eligibility criteria are defined by a fixed, historical base period

- URAA (1994) of the WTO categorized agricultural support payments into three boxes
 - Amber Box: Subsidies which cause most distortion
 - Blue Box: Subsidies that cause some distortion but are production limiting
 - Green Box: Subsidies that cause minimal or no distortion
- Definition of Decoupled Payments (URAA)
 - Financed by taxpayers
 - ▶ Do not depend on current production, factor use, or prices
 - Eligibility criteria are defined by a fixed, historical base period
 - Production not required to receive payments

• Uncertainty - Hennessy (1998)

- Uncertainty Hennessy (1998)
- Imperfect credit market Roe et al. (2003)

- Uncertainty Hennessy (1998)
- Imperfect credit market Roe et al. (2003)
- Labor market El-Osta et al. (2004), Ahearn et al. (2006)

- Uncertainty Hennessy (1998)
- Imperfect credit market Roe et al. (2003)
- Labor market El-Osta et al. (2004), Ahearn et al. (2006)
- Land market Goodwin et al. (2003)

- Uncertainty Hennessy (1998)
- Imperfect credit market Roe et al. (2003)
- Labor market El-Osta et al. (2004), Ahearn et al. (2006)
- Land market Goodwin et al. (2003)
- Expectations Sumner (2003), McIntosh et al. (2006) and Coble et al. (2007)

Follow Duffy and Taylor (1994)

- Follow Duffy and Taylor (1994)
- Combine Dynamic Programming with Expected Present Value calculations and maximize the stream of profits over the two policy regimes

- Follow Duffy and Taylor (1994)
- Combine Dynamic Programming with Expected Present Value calculations and maximize the stream of profits over the two policy regimes
 - ► This allows us to quantify the effect of expected base update in terms of acreage

- Follow Duffy and Taylor (1994)
- Combine Dynamic Programming with Expected Present Value calculations and maximize the stream of profits over the two policy regimes
 - This allows us to quantify the effect of expected base update in terms of acreage
- Representative farmer producing single crop faces price, yield and policy uncertainty

- Follow Duffy and Taylor (1994)
- Combine Dynamic Programming with Expected Present Value calculations and maximize the stream of profits over the two policy regimes
 - ► This allows us to quantify the effect of expected base update in terms of acreage
- Representative farmer producing single crop faces price, yield and policy uncertainty
 - ▶ Policy uncertainty is captured by $\delta \in [0,1]$

- Follow Duffy and Taylor (1994)
- Combine Dynamic Programming with Expected Present Value calculations and maximize the stream of profits over the two policy regimes
 - ► This allows us to quantify the effect of expected base update in terms of acreage
- Representative farmer producing single crop faces price, yield and policy uncertainty
 - ▶ Policy uncertainty is captured by $\delta \in [0,1]$
- National level analysis

• Three Government Payments

- Three Government Payments
 - Direct payments (DP)

- Three Government Payments
 - Direct payments (DP)
 - Counter-cyclical payments (CCP)

- Three Government Payments
 - Direct payments (DP)
 - Counter-cyclical payments (CCP)
 - ► Loan deficiency payments (LDP)

- Three Government Payments
 - Direct payments (DP)
 - Counter-cyclical payments (CCP)
 - Loan deficiency payments (LDP)
- New base acreage for DP and CCP equals the average of the acreage planted during current policy regime

- Three Government Payments
 - Direct payments (DP)
 - Counter-cyclical payments (CCP)
 - Loan deficiency payments (LDP)
- New base acreage for DP and CCP equals the average of the acreage planted during current policy regime
- Results

- Three Government Payments
 - Direct payments (DP)
 - Counter-cyclical payments (CCP)
 - Loan deficiency payments (LDP)
- New base acreage for DP and CCP equals the average of the acreage planted during current policy regime
- Results
 - ▶ The solution is the average optimal planted acreage, \bar{A}

- Three Government Payments
 - Direct payments (DP)
 - Counter-cyclical payments (CCP)
 - Loan deficiency payments (LDP)
- New base acreage for DP and CCP equals the average of the acreage planted during current policy regime
- Results
 - ▶ The solution is the average optimal planted acreage, \bar{A}
 - ullet $ar{A}$ is weakly increasing in δ

- Three Government Payments
 - Direct payments (DP)
 - Counter-cyclical payments (CCP)
 - Loan deficiency payments (LDP)
- New base acreage for DP and CCP equals the average of the acreage planted during current policy regime
- Results
 - ullet The solution is the average optimal planted acreage, $ar{A}$
 - ullet $ar{A}$ is weakly increasing in δ
 - ▶ Maximum percent increase in \bar{A} is 6%

Per Period Profit

Period of analysis covers 2 Farm Bills: 2002-2011

- Period of analysis covers 2 Farm Bills: 2002-2011
- Risk neutral farmer producing a single crop, corn

- Period of analysis covers 2 Farm Bills: 2002-2011
- Risk neutral farmer producing a single crop, corn
- Two sources of income

- Period of analysis covers 2 Farm Bills: 2002-2011
- Risk neutral farmer producing a single crop, corn
- Two sources of income
 - ▶ Market Income: $\tilde{P}_t \tilde{Y}_t A_t$

- Period of analysis covers 2 Farm Bills: 2002-2011
- Risk neutral farmer producing a single crop, corn
- Two sources of income
 - ▶ Market Income: $\tilde{P}_t \tilde{Y}_t A_t$
 - Government payments: DP, CCP and LDP

- Period of analysis covers 2 Farm Bills: 2002-2011
- Risk neutral farmer producing a single crop, corn
- Two sources of income
 - ▶ Market Income: $\tilde{P}_t \tilde{Y}_t A_t$
 - Government payments: DP, CCP and LDP
- Per period profit

$$\pi_t = \tilde{P}_t \tilde{Y}_t A_t + LDP + DP + CCP - TC(A_t)$$

$$\max_{A_t} E \left[\sum_{t=0}^4 \beta^t \pi_t(A_t, \tilde{P}_t, \tilde{Y}_t) + \beta^5 (\delta * VB + (1 - \delta) * VNB) \right]$$

 VB is the value function for the stochastic dynamic programming (SDP) problem associated with base updating

Bhaskar & Beghin (ISU)

$$\max_{A_t} E \left[\sum_{t=0}^4 \beta^t \pi_t(A_t, \tilde{P}_t, \tilde{Y}_t) + \beta^5 (\delta * VB + (1-\delta) * VNB) \right]$$

- VB is the value function for the stochastic dynamic programming (SDP) problem associated with base updating
- VNB is the value function for the SDP problem associated with no base updating

Bhaskar & Beghin (ISU)

$$\max_{A_t} E \left[\sum_{t=0}^4 \beta^t \pi_t(A_t, \tilde{P}_t, \tilde{Y}_t) + \beta^5 (\delta * VB + (1-\delta) * VNB) \right]$$

- VB is the value function for the stochastic dynamic programming (SDP) problem associated with base updating
- VNB is the value function for the SDP problem associated with no base updating
- VB and VNB represent the possible values of future income from the market and government payments

◆ロト ◆団ト ◆豆ト ◆豆ト □ りへぐ

$$\max_{A_t} E \left[\sum_{t=0}^4 \beta^t \pi_t(A_t, \tilde{P}_t, \tilde{Y}_t) + \beta^5 (\delta * VB + (1-\delta) * VNB) \right]$$

- VB is the value function for the stochastic dynamic programming (SDP) problem associated with base updating
- VNB is the value function for the SDP problem associated with no base updating
- VB and VNB represent the possible values of future income from the market and government payments
- \bullet δ captures farmer's beliefs about possibility of base update

4□ > 4□ > 4□ > 4□ > 4□ >

$$\max_{A_t} E \left[\sum_{t=0}^4 \beta^t \pi_t(A_t, \tilde{P}_t, \tilde{Y}_t) + \beta^5 (\delta * VB + (1-\delta) * VNB) \right]$$

- VB is the value function for the stochastic dynamic programming (SDP) problem associated with base updating
- VNB is the value function for the SDP problem associated with no base updating
- VB and VNB represent the possible values of future income from the market and government payments
- \bullet $\,\delta$ captures farmer's beliefs about possibility of base update
- Supply effect of the expectation of base update: $\bar{A}_{|\delta>0} \bar{A}_{|\delta=0}$

Bhaskar & Beghin (ISU) Decoupled Payments 11/16/2007 7 / 15

$$VB_{t}(S_{t}) = \max_{A_{t}} \left[\sum_{k=1}^{8} \sum_{l=1}^{8} M^{i,j,k,l} \pi_{t} + \beta \sum_{k=1}^{8} \sum_{l=1}^{8} M^{i,j,k,l} VB_{t+1}(S_{t+1}) \right], \ t = 1, 2, ...5.$$

•
$$S_t = (\tilde{P}_t, \tilde{Y}_t, BA')$$

Bhaskar & Beghin (ISU)

$$VB_t(S_t) = \max_{A_t} \left[\sum_{k=1}^8 \sum_{l=1}^8 M^{i,j,k,l} \pi_t + \beta \sum_{k=1}^8 \sum_{l=1}^8 M^{i,j,k,l} VB_{t+1}(S_{t+1}) \right], \ t = 1, 2, ... 5.$$

- $S_t = (\tilde{P}_t, \tilde{Y}_t, BA')$
- M is the probability transition matrix

$$VB_{t}(S_{t}) = \max_{A_{t}} \left[\sum_{k=1}^{8} \sum_{l=1}^{8} M^{i,j,k,l} \pi_{t} + \beta \sum_{k=1}^{8} \sum_{l=1}^{8} M^{i,j,k,l} VB_{t+1}(S_{t+1}) \right], \ t = 1, 2, ...5.$$

- $S_t = (\tilde{P}_t, \tilde{Y}_t, BA')$
- M is the probability transition matrix
- Acreage discretized into eight values: 900 acres to 1250 acres in increments of 50

$$VB_t(S_t) = \max_{A_t} \left[\sum_{k=1}^8 \sum_{l=1}^8 M^{i,j,k,l} \pi_t + \beta \sum_{k=1}^8 \sum_{l=1}^8 M^{i,j,k,l} VB_{t+1}(S_{t+1}) \right], \ t = 1, 2, ... 5.$$

- $S_t = (\tilde{P}_t, \tilde{Y}_t, BA')$
- M is the probability transition matrix
- Acreage discretized into eight values: 900 acres to 1250 acres in increments of 50
- New base is average of acreage planted during 2002-06

$$VB_{t}(S_{t}) = \max_{A_{t}} \left[\sum_{k=1}^{8} \sum_{l=1}^{8} M^{i,j,k,l} \pi_{t} + \beta \sum_{k=1}^{8} \sum_{l=1}^{8} M^{i,j,k,l} VB_{t+1}(S_{t+1}) \right], \ t = 1, 2, ...5.$$

- $S_t = (\tilde{P}_t, \tilde{Y}_t, BA')$
- M is the probability transition matrix
- Acreage discretized into eight values: 900 acres to 1250 acres in increments of 50
- New base is average of acreage planted during 2002-06
- Possible new base states equal 32768

$$VB_t(S_t) = \max_{A_t} \left[\sum_{k=1}^8 \sum_{l=1}^8 M^{i,j,k,l} \pi_t + \beta \sum_{k=1}^8 \sum_{l=1}^8 M^{i,j,k,l} VB_{t+1}(S_{t+1}) \right], \ t = 1, 2, ... 5.$$

- $S_t = (\tilde{P}_t, \tilde{Y}_t, BA')$
- M is the probability transition matrix
- Acreage discretized into eight values: 900 acres to 1250 acres in increments of 50
- New base is average of acreage planted during 2002-06
- Possible new base states equal 32768
- Total number of states 64 * 32768 = 2097152

$$VNB_t(S_t) = \max_{A_t} \left[\sum_{k=1}^8 \sum_{l=1}^8 M^{i,j,k,l} \pi_t + \beta \sum_{k=1}^8 \sum_{l=1}^8 M^{i,j,k,l} VNB_{t+1}(S_{t+1}) \right], \ t = 1, 2, ...$$

•
$$S_t = (\tilde{P}_t, \tilde{Y}_t)$$

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 の < @

$$VNB_t(S_t) = \max_{A_t} \left[\sum_{k=1}^8 \sum_{l=1}^8 M^{i,j,k,l} \pi_t + \beta \sum_{k=1}^8 \sum_{l=1}^8 M^{i,j,k,l} VNB_{t+1}(S_{t+1}) \right], \ t = 1, 2, ...$$

- $S_t = (\tilde{P}_t, \tilde{Y}_t)$
- Total number of states equal 64

$$VNB_t(S_t) = \max_{A_t} \left[\sum_{k=1}^8 \sum_{l=1}^8 M^{i,j,k,l} \pi_t + \beta \sum_{k=1}^8 \sum_{l=1}^8 M^{i,j,k,l} VNB_{t+1}(S_{t+1}) \right], \ t = 1, 2, ...$$

- $S_t = (\tilde{P}_t, \tilde{Y}_t)$
- Total number of states equal 64
- Base acreage for DP and CCP remain the same as the 2002-06 period

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ りへ@

Main Problem

$$\max_{A_{t}} \sum_{t=0}^{4} \sum_{k=1}^{8} \sum_{l=1}^{8} \beta^{t} M^{i,j,k,l} \overrightarrow{\pi_{t}} + \beta^{5} \sum_{k=1}^{8} \sum_{l=1}^{8} M^{i,j,k,l} (\delta * \overrightarrow{VB} + (1 - \delta) * \overrightarrow{VNB})$$

 Farmer maximizes the Expected Present Value of the stream of income over 2002-2011, over all base states

Bhaskar & Beghin (ISU)

Results

• Results are determined by the price states

Results

- Results are determined by the price states
- Solution to the problem is the Average Optimal Planted Acreage for 2002-06, (\bar{A}) , conditional on farmer's beliefs, δ

Results

- Results are determined by the price states
- Solution to the problem is the Average Optimal Planted Acreage for 2002-06, (\bar{A}) , conditional on farmer's beliefs, δ
- ullet $ar{A}$ is weakly increasing in δ

Average Optimal Planted Acreage over 2002-06

	δ					
Price State	0	0.25	0.5	0.75	1	
1.625	990	1000	1000	1020	1040	
1.875	1000	1000	1020	1040	1050	
2.125	1000	1020	1040	1050	1060	
2.375	1030	1050	1050	1060	1080	
2.625	1050	1060	1070	1090	1100	
2.875	1070	1090	1100	1100	1120	
3.125	1100	1100	1120	1130	1140	
3.375	1120	1130	1140	1150	1160	

\bar{A} over 2002-06

Percent change in \bar{A} relative to $\delta=0$

		δ		
Price State	0.25	0.5	0.75	1
1.625	1.01	1.01	3.03	5.05
1.875	0.00	2.00	4.00	5.00
2.125	2.00	4.00	5.00	6.00
2.375	1.94	1.94	2.91	4.85
2.625	0.95	1.90	3.81	4.76
2.875	1.87	2.80	2.8	4.67
3.125	0.00	1.82	2.73	3.64
3.375	0.89	1.79	2.68	3.57

Concluding Remarks

 Decoupled payments do influence producer decisions but impacts are small in magnitude

Concluding Remarks

- Decoupled payments do influence producer decisions but impacts are small in magnitude
- Maximum percent increase in \bar{A} is 6%

Concluding Remarks

- Decoupled payments do influence producer decisions but impacts are small in magnitude
- Maximum percent increase in \bar{A} is 6%
- Policy implication